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ABSTRACT: Selective targeting of membranes with a specific
receptor profile is an ongoing challenge in targeted drug delivery.
We investigate the adsorption of copolymers on a multicomponent
receptor-covered surface using grand-canonical Monte Carlo
simulations and demonstrate that polymers can be designed to
target a particular receptor density profile. To achieve this, the ligand
profile on the polymers should match the targeted receptor profile,
and the ligand−receptor affinity should be inversely proportional to
the ligand profile. While the same can be obtained using multivalent
nanoparticles, the entropic effects due to polymer conformations
significantly enhance the binding selectivity of multivalent polymers
compared to nanoparticles. Surprisingly, the ligand distribution on
the polymer plays a crucial role, whereas the persistence length does
not. The optimal selectivity to the overall receptor concentration is obtained by the Poisson distribution of ligands (random
copolymer), whereas the maximal selectivity to a specific receptor profile is obtained by a defined sequence of grouped alternating
ligands (regular copolymer). Interestingly, the regular copolymer can become anti-selective when ligands of the same type are in
homogeneous blocks, showing that specific ligand distribution qualitatively affects the targeting ability. These findings suggest that
sequence control is necessary to selectively target a specific density profile of membrane receptors using linear copolymers.

■ INTRODUCTION
The field of nanomedicines strives to apply nanosized tools to
the prevention and treatment of disease.1 It is concerned with
designing drug delivery systems which preferentially deliver
drugs to desired tissues. One of the main applications of
nanotherapeutics is cancer treatment, some strategies passively
target tumors using the EPR effect,2,3 while others try to
overcome some of the limitation of passive targeting by
actively targeting disease-specific biomarkers.4−6 Selectively
targeting cancer cells can be especially difficult, since they often
do not express a unique biomarker, but can instead only be
recognized through the overexpression of certain markers also
present in healthy cells. In such a system, selective targeting of
the malignant cells is crucial for avoiding damage to healthy
cells and reducing the negative side effects of a given
treatment.7−9 The selectivity of binding is far from the only
consideration when designing nanotherapeutics,10−12 but it is
an important one. In this work we focus on a particular strategy
that has proven effective at increasing the selectivity of binding
to a surface overexpresing certain biomarkes, namely multi-
valent binding.13−15 Multivalent binders are species (nano-
particles, polymers) that interact simultaneously with a
multitude of binding units. We henceforth refer to the moieties
carried by the multivalent binders as ligands, and the moieties
present on a (cell) surface which we are trying to target as
receptors, whether or not these are ligand and receptors in the

biological sense. The combinatorial entropy of multivalent
interactions leads to superselectivity, a sharp, faster-than-linear
increase in the number of bound multivalent probes with the
density of receptors.16 Thus, multivalency facilitates selective
targeting of surfaces on the basis of the density of receptors or
markers.
Multivalent binding is commonly found in nature. Living

organisms often rely on superselective multivalent interactions
between biomolecular complexes and cells, in protein-glycan
interactions on the cell surface,17 immune recognition,18

intercellular transport,19,20 adhesion, and host recognition by
bacteria or viruses,21,22 as well as in many other examples.23,24

Many types of multivalent construct have been reported in the
scientific literature,24 ranging from polymers,25 proteins,26,27

antibodies,18,28 viruses21 to nanoparticles.29−31 In addition to
targeting a single overexpressed receptor on the cell surface,
theoretical32,33 as well as experimental34,35 studies have shown
promising results when using nanoparticles to target a profile
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of multiple receptors. Interactions with multiple receptor types
facilitate targeting of a membrane that does not possess a single
unique overexpressed receptor or marker.32

A prominent branch of nanomedicine development are
polymer therapeutics, which present an alternative to nano-
particle based approaches.36−39 Multivalent polymers can also
exhibit higher selectivities compared to nanoparticles due to
stronger cooperative effects of polymer binding to a sur-
face.24,25 We are specifically referring to chelate cooperativity,
which arises in multivalent entities from the interactions
between surface receptors and multiple ligands on the same
entity, combined with allosteric cooperativity where binding of
some ligands facilitates binding of other ligands.40,41 Stronger
correlations between ligand binding within the same entity
indeed suggest that copolymers could be more selective than
nanoparticles in targeting a specific receptor concentration
profile; where a specific receptor profile is defined by the
membrane composition, i.e., the membrane concentrations of
all relevant receptors. Moreover, previous studies have
investigated the adsorption of linear polymers with a variety
of different distributions of surface-binding functional groups
on the polymer backbone, which revealed that the distribution
of ligands exerts a significant effect on polymer adsorp-
tion.42−47 However, the potential and ability of multivalent
copolymers to target a specific receptor profile in multi-
component surfaces currently remain unknown. This study
aims to fill that gap in our understanding by investigating the
optimal design of multivalent copolymers for selective
targeting.
We focus on a system of linear multivalent copolymers with

two or three distinct types of ligands that adsorb to a planar
surface containing different types of receptors. The ligands
carried by polymers can bind to the corresponding receptors
on the surface, schematically depicted in Figure 1A. We strive
to make our results applicable to a range of multivalent
selective targeting applications, such as e.g. host−guest
chemistry,25,48 biorecognition,49−51 or targeting overexpressed
biomarkers. We therefore apply a scale-free model where a
polymer is represented as a chain of course-grained polymer
beads.52 Each bead represent a polymer coil whose radius of
gyration is similar to the surface receptor size. We investigate
how the ligand distribution, interaction strength, and backbone
rigidity affect the selectivity using grand-canonical Monte
Carlo simulations. The goal is to design copolymers that

selectively target a specific composition and concentration of
receptors, as illustrated in Figure 1B.

■ MODEL AND METHODS
Simulation Model. We employ a coarse-grained model and study

multivalent copolymer adsorption on a multicomponent membrane
using grand-canonical Monte Carlo. To keep the model as general as
possible, we employ a soft-blob model where each polymer consists of
Nb beads connected by harmonic springs. Each bead represents a
flexible polymer coil its interactions are given by soft Gaussian
repulsion52 (soft-blob model). The soft-blob model has been
previously utilized to study the adsorption of multivalent
polymers25,48 or polymer-coated nanoparticles.32,53 The main
advantage of the soft-blob model are transferable potentials, we can
represent a particular polymer with different numbers of beads (i.e.,
many small beads or fewer larger ones) without charging the
interaction potentials. Each polymer bead in our model represents a
polymer coil whose radius of gyration is similar to the size of the
surface receptors. When studying the effect of polymer persistence
length, we use the standard bead−spring model where each bead
represents an individual monomer described by WCA repulsion and a
three-body angular term that controls polymer stiffness54 (bead−
spring model). We apply the soft-blob model for a flexible polymer
because it is computationally faster than the bead−spring model due
to soft Gaussian potentials compared to hard-core WCA. However,
we find that both models yield quantitatively the same results with a
simple rescaling of interaction by 0.1kBT (see SI, Figure S2), where kB
is the Boltzmann constant and T the absolute temperature.
The membrane is modeled as a flat surface with area S that contains

receptors of multiple different types. The membrane is described by a
receptor composition vector Nr = [Nr,1, ..., Nr,n], where Nr,i represents
the number of receptors of type i while n is the total number of
receptor types. The total number of receptors is Nrec = ∑n

i=1Nr,i. The
receptor composition c determines the receptor densities as a fraction
of the total and is defined as c = [c1, ..., cn]= Nr/Nrec. The receptors are
mobile within the membrane and interact via a short-range hard-
sphere potential between each other and via bonding with ligands in
polymers.
To model a multivalent copolymer, specific beads contain side-

chain ligands (Figure 1). Beads carrying ligands can bind to one
surface receptor but are otherwise described by the same interactions
as beads without ligands. A polymer contains Nl = [Nl,1, ..., Nl,n]
ligands where Nl,i represents the number of ligands of type i and each
bead can contain at most one ligand. The total number of ligands on a
polymer is Nlig = ∑n

i=1Nl,i, and the corresponding copolymer ligand
composition l is defined in the same way as the receptor composition,
l = [l1, ..., ln ] = Nl/Nlig. Ligands can form valence-limited bonds with
receptors, a ligand can bind to at most one receptor at a time, and vice
versa. The bond interaction is described with a symmetric interaction

Figure 1. Surface targeting with copolymers. (A) Schematic representation of a multivalent copolymer containing two types of ligands (colored
blue and red) binding to a surface containing two types of receptors (colored light blue and light red). (B) The goal of selective targeting: the probe
binds strongly to a surface with the targeted receptor profile and concentration; while binding weakly/not binding to surfaces with a different
profile or lower concentration of receptors.
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matrix ϵ of size n where each element ϵi,j denotes the binding free
energy between ligand type i and receptor type j. ϵi,j represents the
strength of the individual ligand−receptor interaction and is
connected with the experimentally relevant dissociation constant for
the particular interaction, βϵi,j ∝ ln(Kd,ij), with Kd,ij the ligand−
receptor dissociation constant and β the inverse temperature, β = 1/
(kBT). Ligands can only bind to cognate receptors, that is, we do not
consider cross-binding, ϵi≠j = ∞. A flexible side chain linker is
implicitly modeled with a weak harmonic potential between bound
ligands and receptors. We expect our findings are robust and model-
independent, which is supported by the observation that bead−spring
and soft-blob models yield consistent results (see Supporting
Information for additional details about the model).
We performed grand-canonical Monte Carlo (GCMC) simulations

of multivalent polymer adsorption onto a surface covered with
receptors. Polymer insertion/deletion was handled using the Rose-
nbluth Configuration-Bias Monte Carlo method.55 From GCMC
simulations we calculate the average number of bound polymers ⟨Nbp⟩
and the fraction of the surface occupied by polymers θ. We define a
polymer “footprint” size as a = Vpoly

1/3, where V Rpoly
4
3 g

3= is the
volume occupied by one polymer in the bulk solution at dilute
conditions, with Rg being the radius of gyration of the polymer; Rg ≈
RbNb

ν for the soft-blob model with Rb the radius of gyration for an
individual bead and the scaling exponent ν = 0.588 for good solvent

conditions. The surface coverage is then a
N

S
2bp= , with S as the

area of the receptor covered surface.a

We initially focus on a symmetric case targeting a surface with two
distinct receptor types with equal numbers, c*= [0.5, 0.5], where c* is
the targeted receptor composition. Interaction strengths are also
symmetric, ϵ1,1 = ϵ2,2 = ϵ. The receptor surface density σR is set to 50
receptors per flexible polymer “footprint” area, σR = 50/a2 and
polymers consist of Nb = 48 beads. We set the chemical potential of
the polymers such that the bulk polymer concentration ρ = 0.01/Vpoly.
The simulation box is Lx = Ly = 100Rb ≈ 10Rg in lateral directions and
Lz = 60Rb ≈ 6Rg perpendicular to the surface. We performed grand
canonical simulations to 109 cycles (where a cycle represents Nb
individual Monte Carlo moves of either individual bead displacement,
receptor displacement or polymer insertion/deletion), with three
repeats of each simulation to obtain an averaged result. To investigate
polymer binding cooperativity, we performed free-energy calculations
using the Wang−Landau method56,57 and determine the dependence
of the free energy on the number of bonds formed, F(λ), and the

receptor composition, F(c1). Additional details about the implemen-
tation of the simulations can be found in the Supporting Information.
Quantifying Selectivity. We are interested in two distinct types

of selectivity, selectivity to a change in the total number of receptors
on the surface and selectivity to a change in the receptor composition.
To quantify selectivity to the number of receptors we use the well-
known selectivity parameter α, first defined by Martinez-Veracoechea
and Frenkel:16

d
d N

ln
ln rec

=
(1)

where θ is the surface coverage, i.e., the fraction of the surface covered
by the bound polymers, and Nrec is the total number of receptors.
High values of α (α > 1) define the superselectivity regime, where an
increasing number of receptors results in a faster-than-linear increase
in the number of bound polymers, see Figure 2A.
To quantify selectivity to the receptor composition we define a new

selectivity parameter, γ, which represents the relative curvature in the
surface coverage with respect to the receptor composition around the
targeted value (c = c*), calculated as

c
c

det
( )

( )
c c

= [ ]

= *

i
k
jjjj

y
{
zzzz

(2)

where c( )[ ] is the Hessian matrix of second derivatives of the
surface coverage θ with respect to the receptor composition c. Thus, γ
is defined as the (negative) relative curvature of θ at the targeted
composition c*. Note that for a two-component surface, γ simplifies

to a single term ( )c1/ ( ) d
dc c c

1
2

1
2

1 1

= *
= *

; see also Figure 2B which

illustrates the calculation of γ. This definition [eq 2] mirrors the
selectivity based on the curvature of the binding free energy in ref
32. Basing the definition on the surface coverage θ rather than free
energies provides a more direct measure of the targeting selectivity
and represents a direct counterpart to α.
Table 1 provides a quick reference for parameters and variables

commonly mentioned throughout this work.

■ RESULTS AND DISCUSSION
Polymer Design: Ligand Distribution. This work aims

to provide guidelines for designing multivalent polymers to
enhance selective targeting. To this end, we studied the effect

Figure 2. A schematic representation of the definition of the selectivity parameters α and γ. (A) α represents selectivity to the number of receptors;
it is calculated as the slope of a plot of lnθ against ln Nrec, defined by eq 1. (B) γ represents selectivity to the receptor profile by measuring the
relative curvature of the surface coverage θ(c) with respect to the receptor composition at the targeted composition defined by eq 2. The insets in A
and B feature examples of equilibrium system configurations where the small orange and cyan spheres represent receptors of two different types.
The large green, red, and blue spheres represent polymer beads, where green spheres carry no ligands, while red and blue beads carry ligands that
bind with orange and cyan receptors, respectively. The polymers have l = [0.5,0.5] with central-alternating ligand distribution. The graph and
snapshots in (A) are calculated with Nlig = 40 and βϵ = −2.8, the graph and snapshots in (B) with Nlig = 16 and βϵ = −3.5.
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of the ligand distribution on the adsorption and selectivity of
multivalent polymers. Most theoretical models of multivalent
interactions16,25,32,48 employ a mean-field approximation where
ligands positions are not explicitly considered. However, the
position of a ligand in the polymer chain can significantly
influence the properties of the polymer. For example, a ligand
on the edge of a polymer likely has a lower entropic penalty for
binding than a ligand in the middle of the polymer. More
importantly, multiple ligands adjacent to each other in the
chain contour can bind to a surface as a “train” with a much
lower entropic penalty per ligand, compared to ligands far
apart that form “loops”.
Throughout this work, we considered five different ligand

distributions on polymer chains, see Figures 3 and 4A for a
schematic representation. Through a typical synthesis process
of a copolymer, randomness in the number and distribution of
ligands can be expected. We capture this with polymers on

which the number of ligands is Poisson distributed (with Nlig as
the expected value) and the ligands are randomly distributed
along the polymer (Poisson copolymers). Each polymer
inserted into the simulations has a randomly determined
number and distribution of ligands of each type, which means
the ligand composition of individual polymers can also vary
between polymers. We also consider polymers with a constant
number of ligands that are randomly distributed (Random
copolymers), i.e. every polymer has exactly the same
stoichiometry, but the ligand positions are random. The
remaining ligand distributions considered in this study
represent well-defined regular copolymers: we studied
copolymers with ligands distributed uniformly on the polymer
backbone in a regular alternating pattern (Uniform copoly-
mers) and central copolymers that have all the beads with
ligands in a block in the center of the polymer and all the beads
without ligands in tails on the edges. We studied two versions
of central copolymers, a variant where the types of ligands in
the central block alternate (Central-alternating copolymers)
and a variation where the ligands of a particular type are all
placed together in a block within the larger central block of all
ligands (Central-block copolymers). We note that each bead in
the simulations does not necessarily model a single monomer,
but can represent a short flexible polymer coil whose size is
comparable to the size of receptors.
Figure 3 shows a comparison of equilibrium configurations

between central-alternating, Poisson, and uniform copolymers
with identical binding strength, ligand, and receptor
composition. In Figure 3A we observe many central-alternating
polymers, the ligand beads are bound to the surface, forming
cooperative “trains”, while the tails without ligands stick away
from the surface. Poisson and uniform copolymers (Figure
3B,C) exhibit fewer polymers bound to the surface due to
loops between the bound ligands. Configurations of central-
block copolymers are qualitatively similar to central-alternat-

Table 1. Quick Reference for Common Parameters and
Variables

ϵ, ϵi,j Binding strength parameter, represents the free energy of
individual receptor−ligand interactions, βϵi,j ∝ ln(Kd,ij), with
β = 1/(kBT)

Nlig Number of ligands on polymers, up to 1 ligand per polymer
bead

l1, c1 Fractions of ligands and receptors of type 1
kϕ Parameter describing the strength of the angular potential,

connected with persistence length p ∝ kϕ/kBT for kϕ > kBT

θ Surface coverage, the fraction of the surface covered by
polymers

α, γ Selectivity to the receptor concentration and composition (see
eqs 1 and 2, Figure 2)

Fb Free energy of binding of polymers, βFb ∝ ln (Kd, polymer)
f b Free energy of binding per ligand, f b = Fb/Nlig

F(λ), F(c1) Dependence of the free energy on the number of formed
bonds λ and the fraction of type 1 receptors c1.

Figure 3. Examples of simulation snapshots for different ligand distributions with the same binding strength and number of ligands. (A−C)
Snapshots for central-alternating, Poisson, and uniform copolymers, respectively. Top view on the top, close-ups of the side view below. Green
spheres depict polymer beads not carrying ligands, while red and blue spheres represent beads with ligands of two different types. Smaller orange
and cyan spheres denote surface receptors that can bind with red and blue polymer beads, respectively. Parameters: symmetric ligand and receptor
profile l = c = [0.5, 0.5], βϵ = −3.75, Nlig = 16.
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ing, while those of random copolymers resemble those of
Poisson copolymers. This shows that ligand sequence can
substantially affect binding.
To investigate the selectivity of these five ligand distribu-

tions, we performed simulations with different ligand−receptor
binding strengths ϵ and numbers of ligands per polymer Nlig
and calculated the corresponding selectivity parameters α and
γ. Figure 4B shows the dependence of selectivity α on ϵ and
Nlig for central-alternating copolymers as an example. We see
that the selectivity is low when the binding is weak, it increases
and peaks with increasing binding strength ϵ and falls again at
higher ϵ when the surface becomes saturated (cf. Figure 2A).
The position of the maximum selectivity moves to less negative
ϵ (weaker ligand−receptor bonds) at higher Nlig due to
multiple simultaneous interactions.58

We calculated an analogous data set for the other four ligand
distributions for both selectivity parameters (Supporting
Information, Figures S6, S7) and found the position of the
maximum is qualitatively similar in all cases, less cooperative
ligand distributions move the position of the maximum to
more negative binding strengths at low Nlig (SI, Figure S5).
The maximum value of the selectivity, however, can be widely
different. We are interested in the maximum selectivities across
all binding strength values ϵ for the different ligand
distributions. To minimize statistical errors, the maximal
selectivity at each value of Nlig was calculated by fitting a
cubic spline to α(ϵ) and γ(ϵ) within a range ϵ ± 0.15 from the
highest value and finding the maximum (Figure 4C, D).
Uncertainties in the maximal selectivity were estimated by
calculating the standard deviations via the bootstrap
method.59,60 The uncertainties for Poisson copolymers are
much greater due to the additional randomness in the structure
of the polymers.
Selectivity to the Total Receptor Concentration. Our

results show that, surprisingly, Poisson-distributed ligands

provide the highest selectivities to the overall receptor
concentration α (Figure 4C). This is counterintuitive since
the polydispersity in the distribution of binders usually flattens
the adsorption or binding curve. Moreover, regular copolymers
are generally more specific than random copolymers.47

However, with a random Poisson distribution the polymers
that preferentially adsorb are those with a higher-than-average
number of ligands, which increases the selectivity. We did not
find any previous specific mention of the increase in selectivity
with the Poisson distribution of ligands, but this result is
consistent with mean-field theoretical models using only a
single type of ligand.58 Nevertheless, it is surprising that
Poisson copolymers exhibit selectivity higher than that of the
specifically designed regular copolymers.
At a constant number of ligands (no Poisson distribution),

central (alternating and block) copolymers display the highest
selectivity α, followed by random copolymers, while uniform
copolymers exhibit the lowest selectivity. We propose that the
reason for this lies in the cooperativity between the ligands.
Central copolymers have ligands next to each other, which
leads to cooperative behavior; when a ligand binds to the
surface, it brings adjacent ligands close to the surface as well,
making them more likely to bind together in “trains”42−47 (cf.
Figure 3). Uniform copolymers, on the other hand, have
ligands further apart, which decreases the cooperative effect.
Moreover, the parts of the polymer between ligands in uniform
copolymers crowd the surface, forming ”loops”, whereas in
central copolymers the beads without ligands stick out as
”tails” away from the surface with receptors. These effects lead
uniform copolymers to exhibit more gradual adsorption and
thus lower selectivity compared to central copolymers. Similar
results were found in a study on multivalent copolymers with a
single type of ligand, where copolymers with all ligands in a
block significantly outperformed uniform copolymers.61 As
expected, random copolymers fall in between these two

Figure 4. Effect of the ligand distribution on selectivity. (A) The five types of ligand distributions investigated in this work (see text for exact
definitions). (B) Heatmap of selectivity α for different numbers of ligands Nlig and binding strengths ϵ for central-alternating copolymers. (C, D)
The maximum value of selectivities (maximum over all ϵ) for different ligand distributions and numbers of ligands Nlig. Data obtained using a
symmetric ligand profile l = [0.5, 0.5]. In most cases the uncertainties are smaller than the symbol size, lines are guides for the eye.
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limiting cases. We find statistically no difference in the
selectivity α between central copolymers with alternating
ligand types and with all ligands of a single type in a block,
implying that the distribution of ligand types does not have a
discernible effect on the selectivity to the number of receptors.
At the maximal number of ligands (Nlig = 48 = Nb, all polymer
beads carry ligands), the selectivity α for all distributions
converge. This is because uniform and central-alternating
copolymers with Nlig = Nb are identical, while central-block and
random copolymers differ only in the distribution of ligand
types.
Selectivity to the Receptor Composition. We now turn our

attention to selectivity to changes in the receptor profile γ (cf.
Figure 2B). Contrary to the case of α discussed above,
Poisson-distributed ligands exhibit among the lowest γ values
(Figure 4D). It was argued before using an analytical model
that for Poisson-distributed ligands on multivalent nano-
particles the binding free energy cannot exhibit a minimum at
an arbitrarily chosen receptor composition.32 Indeed, we find γ
values that are close to zero with Poisson copolymers.b

Central-alternating copolymers exhibit the highest γ values
for any number of ligands Nlig. Uniform copolymers exhibit
significantly lower selectivity than central-alternating copoly-
mers, we again attribute this difference to the decrease in
cooperativity between ligand binding. Moreover, contrary to α,
the γ selectivity for central-block copolymers differs greatly
from that of central-alternating copolymers. For Nlig = 2
central-block and central-alternating copolymers are identical,
therefore, their selectivities are the same. Surprisingly, as Nlig
increases, the maximal selectivity of central-block copolymers
decreases greatly compared to other ligand distributions and
even turns negative. This means that for any value of binding
strength ϵ, central-block copolymers are anti-selective, the
surface coverage θ does not have a maximum, and in fact
shows a minimum at the targeted receptor composition.
Random copolymers can contain all random local arrange-
ments of ligands and fall in the middle between the three
regular cases. We note that even when each bead carries a
ligand (Nlig = 48), γ for random copolymers is significantly
lower than for central-alternating/uniform (which are identical
at Nlig = 48). This implies that a ligand distribution where
ligand types are randomly distributed in a block in the center
of the polymer (this would likely be much simpler to
synthesize experimentally than alternating ligand types)
would perform significantly worse than central-alternating,
and that alternation of ligand types is key to achieving high γ
selectivity.
These results show that the distribution of ligand types

qualitatively affects the selectivity γ. We propose that the
reason for the importance of ligand type distribution lies in
cooperative regions of the same ligand type. To provide an
example, in the case of polymers with equal numbers of two
types of ligands (l1 = l2 = 0.5), the targeted surface for such
polymers is one with an equal distribution of two types of
receptors (c1* = c2* = 0.5). If we consider the adsorption of such
polymers to a surface with only one type of receptor (c1 = 1),
the beads carrying ligands type 2 play no part in the binding,
since we do not consider cross-binding ϵ12 = ∞. This means
that central-alternating copolymers behave similarly to uniform
copolymers with a single type of ligand (beads not involved in
binding are located between beads with ligands) and therefore
the cooperative binding effect is much weaker. On the other
hand, the relevant ligands in central-block copolymers still

form a block, which results in strong cooperative adsorption as
a train on the surface, even when the surface contains a single
receptor type. The simulation results show that this effect can
be very strong, to the point that the polymers become anti-
selective. For sufficiently large blocks (large Nlig), the binding
of a single block to a surface at c1 = 1 is stronger than the
binding of two blocks at lower receptor concentrations (c1 = c2
= 0.5) and thus γ becomes negative.
Summarizing the effect of the ligand distribution, the

random Poisson distribution provides the optimal selectivity
to the receptor concentration α. Therefore, if we want to apply
multivalent polymers to selective targeting of surfaces based on
overall receptor concentration, the ligand distribution on the
polymers does not need to be precisely controlled. On the
other hand, when targeting a particular receptor profile,
random fluctuations in the number of ligands and even the
positions of the ligands negatively impact the selectivity γ.
Therefore, precise control of the polymer sequence is
necessary to successfully target a specific receptor composition.
Copolymers with alternating types of ligands in a block in the
center of the polymer exhibit the highest selectivity γ.
Moreover, block copolymers exhibit very low selectivity and
even become anti-selective, γ < 0, when the size of the block is
large. The exact position of the ligand block is not of great
importance as shown in ref 61 that studied polymers with a
single type of ligand and demonstrated that polymers with the
block in the center give slightly higher α selectivity than
polymers with the block at the edge, but the difference was
minimal. Because central copolymers with alternating ligand
types exhibit the highest selectivity to the receptor profile γ and
simultaneously very high selectivity to receptor concentration
we will mainly focus on central-alterating copolymers
throughout the rest of this work.
We note that our study did not consider the effect of

polydispersity in the polymer size, only in the number of
ligands. We expect that size polydispersity would likely lead to
a decrease in selectivity. Moreover, this study was performed in
conditions where the basic requirements for superselectivity (a
large number of possible bound microstates) are met for all
ligand distributions (many receptors in range to bind). In
conditions where this does not hold we expect deviation from
our predictions. For example, if receptors are large and ligand
linkers very short such that adjacent ligands cannot be bound
simultaneously we expect that uniform copolymers, which have
adjacent ligands separated further apart so that they can both
bind to receptors simultaneously, could outperform central
copolymers. Since each soft-blob bead represents a flexible
polymer coil, we emphasize that the results of our study do not
show that adjacent polymer monomers should carry ligands for
optimal selectivity. Instead, the distance between ligands
should approximately match the minimum distance between
receptors, so that neighboring ligands can bind. Within the
studied conditions (an abundance of receptors) receptor
mobility does not have a large effect on surface coverage and
selectivity (SI Figure S3). When studying systems with fewer
receptors their mobility could start to play a role in selectivity
as polymers recruit nearby receptors. Previous studies have
shown that receptor mobility can enhance (α) selectivity and
shift the selectivity maximum to a lower number of
receptors.62,63 In the cases where receptors are in fixed
positions, large inhomogeneities in those positions could also
affect results, with recent work showing that uniformity in the
receptor distribution can enhance selectivity.64,65
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Polymer Rigidity. In addition to ligand distribution,
polymer bending rigidity represents yet another tunable
parameter that distinguishes polymers from nanoparticles and
other multivalent constructs. To model semiflexible polymers
we used the bead−spring model,54 which represents each
monomer by a single bead and features a harmonic bond
between consecutive beads, a Weeks−Chandler−Andersen
(WCA) repulsive interaction between the beads, and an
additional three-body angular potential term. The angle
potential Uangle controls the rigidity of the polymer,

U k (1 cos )angle = (3)

where ϕ is the angle between the vectors of two consecutive
bonds, and the prefactor kϕ determines the polymer stiffness.
The persistence length is lp ≈ ⟨l⟩β kϕ for kϕ > kBT, where ⟨l⟩ is
the average bond length and β = 1/(kBT), while for kϕ ≪ kBT
we recover the flexible polymer with lp ≈ ⟨l⟩/2 since ⟨l⟩
represents the single Kuhn length.
The flexible polymer case (kϕ = 0) yields quantitatively the

same results for selectivity as the soft-blob model used
throughout the rest of this work. A comparison and additional
details about the polymer models can be found in the
Supporting Information (Figure S5). This indicates that the
design rules for optimal selectivity (Figure 4) do not depend
on the system size, and apply both to a small length-scale, e.g.
biorecognition where specific polymer monomers bind to
specific sites on a target protein, or a large-length scale where a
long ligand-functionalized polymer binds to multiple different
proteins or receptors.
We studied the effect of polymer stiffness on selectivity by

calculating the dependence of the maximal selectivity α and γ
on the strength of the angular interactions kϕ. Maximal
selectivity was calculated by optimizing the receptor−ligand
binding strength ϵ as described for data in Figures 4C,D. We
focused on central copolymers with alternating ligands since
this type of copolymer has proven optimal for γ while still
exhibiting high α values. The results for maximal α and γ as a
function of angle potential strength (persistence length) are
depicted in Figure 5. The studied range of kϕ is large, from
flexible polymers (kϕ = 0) to stiff, rod-like polymers (βkϕ =
50). We find that, surprisingly, changing the rigidity does not
have a strong effect on either α or γ. Increasing the rigidity of
the polymer increases α at high Nlig by up to 30%. However, in
all other cases, changing the persistence length by nearly 2
orders of magnitude has no significant effect on maximal
selectivities.
We interpret that the reason for the small effect of

persistence length is that increasing the polymer rigidity
introduces competing effects on polymer selectivity. First, it
increases the effective size of the polymers by increasing the
radius of gyration Rg (see SI, Figure S1), which in turn
increases the size of the site required for a polymer to adsorb.
Thus, the effective activity of the polymers is increased, which
results in a decrease in selectivity62 (see SI, Figure S4). On the
other hand, increasing polymer stiffness increases cooperative
binding by increasing the propensity to form “trains” while
decreasing the number of “loops” formed when polymers
adsorb to a surface.66,67 The increased number of ”trains”
suggests more cooperative binding, which we have shown
increases the selectivity of the adsorption. Thus, the two effects
of increased Rg and increased cooperatively have opposite
effects on selectivity, explaining why changing the persistence

length altogether does not exert a large effect on the maximal
selectivity.
We demonstrate the increase in binding cooperativity by

showing that the optimal binding strength curve shifts to less
negative ϵ at higher kϕ, indicating that polymer binding is
stronger at higher persistence lengths (Figure 5C). This is
confirmed directly by calculating the free energy of binding per
ligand f b using the Wang−Landau method56 and biasing the
simulations in the number of formed bonds, see Figure 5D. We
observe the binding energy decreasing with increasing kϕ for
different values of Nlig, further demonstrating the proposed
increased cooperativity in ligand binding with polymer rigidity.
We note that polymer persistence length may have a more

significant impact on selectivity in conditions where a change
in rigidity could significantly alter how many receptors the
ligands of a particular polymer can access. For example, if the
spatial distance between neighboring ligands on a flexible
polymer chain is smaller than the receptor size, the increase in
persistence length would increase the spatial distance between
ligands allowing them to bind more receptors. Moreover, if the
maximal number of receptors that can fit into a polymer
footprint is smaller than the number of ligands, increasing the
persistence length would increase the polymer footprint
allowing binding to more receptors and thus increasing the
selectivity.
Comparison with Analytical theory. The majority of

theoretical models describing multivalent binding postulate the
assumption that the ligand binding is uncorrelated.16,25,32,48,53

This means that ligands bind independently with no allosteric
cooperativity; the binding of one ligand has no effect on the
binding of the remaining ligands (apart from occupying a
receptor). To investigate whether these models apply to
multivalent copolymers, we compare our simulation results
with the theoretical model for multicomponent multivalent
binders.32 This model assumes that different ligands bind
independently and the free energy of binding per ligand f b can
be calculated analytically from the ligand and receptor profiles
and the binding strengths,

Figure 5. Effects of polymer rigidity on selectivity. (A, B) The
dependence of the maximum selectivities α and γ, on the rigidity of
the polymer for different numbers of ligands in the polymer. kϕ is the
strength of the angular potential which controls polymer stiffness (eq
3). (C) The dependence of the binding strength ϵ at maximal α. (D)
The dependence of the free energy of binding per ligand, f b, on kϕ at
βϵ = −2.5. Parameters: l = [0.5, 0.5]. Uncertainties are smaller than
symbol size.
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where Nrp is the total number of receptors a polymer can bind
with (Nrp = σra2). We can predict the surface coverage θ from
the binding free energy using the Langmuir isotherm,
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where z is the polymer activity and Fb = Nlig f b. We have shown
that selectivity can be strongly increased by strengthening the
correlations between ligand binding (Figure 4). However, at
this point, it is unclear if the additional correlations affect the
general design rules for selective targeting of specific receptor
composition profiles that were previously developed for
nanoparticles.32 The two design rules are

1. The ligand profile should match the receptor profile it
targets, l = c*.

2. Binding strength should be inversely proportional to
targeted receptor density, e−βϵi,i ∝ 1/ci*, and no cross-
binding e−βϵi≠j = 0.

This implies that every ligand has the same probability of being
bound. The third design rule states that this probability should
be ≈70% (i.e., free-energy per bond is f b = 1.256kBT) at
optimal selectivity.32

We investigate to what extent these design rules apply to
linear polymers. We find that the maximum in surface coverage
θ occurs exactly at c1 = l1 (Figure 6A), which is in perfect
agreement with the first theoretical design rule on the position
of the maximum. However, there is a significant disagreement
between the uncorrelated ligands theory and polymer
simulations in the curvature of θ(c1), indicating larger γ
selectivity of polymers, which we will discuss below. Polymer
simulations are also in agreement with the second design rule;
any deviation from the second design rule causes the polymer
to miss-target the surface composition (Figure 6B). Fur-
thermore, we calculate the targeted receptor composition (i.e,
the composition at which the binding free energy is
minimized) over a full spectrum of interaction strengths ϵ1,1
and ϵ2,2, and find that it indeed matches the second design rule
(Figure 6C). Interestingly, at stronger binding (more negative
ϵ), we observe a larger area of ϵ1,1, ϵ2,2 values that target the
correct receptor composition. While this extra leeway in
polymer design appears very useful, we note that selectivity
generally decreases at strong binding strengths.
The preceding figures have shown that copolymer design for

composition targeting should follow the first two theoretical
design rules. This is surprising given the strong cooperative
effects in polymer binding which are absent from analytical
theory. The cooperative effects are shown by comparing the
dependence of free energy on the number of formed bonds
F(λ) for polymers, nanoparticles, and analytical theory (Figure
6D). Nanoparticle behavior is relatively well described by the
assumption of uncorrelated ligand binding, with noticeable
deviations only at very large numbers of bonds.32 However,
central copolymers differ greatly from the uncorrelated ligand
theory, with significantly lower values of F(λ) at a higher
number of bonds, which confirms our earlier claim of strong
cooperative binding in polymers due to the formation of
”trains”.

We further investigate the effect of cooperative binding by
calculating the dependence of selectivity γ on the free energy of
binding per ligand f b (Figure 6E). The dependence of f b on ϵ
for different Nlig was calculated via Wang−Landau simulations
and combined with the data for the dependence of γ on ϵ and
Nlig (cf. Figure 4D) to plot γ against f b. We note that because f b
= 1/Nlig ∑λ e−β F(λ) is calculated from the dependence of free
energy on the number of formed bonds F(λ), the value of f b
depends on the height constraint of the polymer which
influences the free-energy to form the first bond F(1).
Following previous nanoparticle analysis,32 we chose the
height constraint such that the first two bonds follow the
uncorrelated ligands theory (this also applies to other F(λ)
calculations through this work, Figure 6D and 5D). We find
the γ maximum at f b ≈ − 0.4kBT, which is about three times
smaller in magnitude than the theoretical prediction [third
design rule: f b ≈ −1.256kBT], which we attribute to the
cooperative binding of the polymers [Figure 6D]. Thus, due to
correlations in ligand binding, polymers exhibit much higher

Figure 6. Design rules for copolymers and comparison with
nanoparticle theory (eq 4). (A) Surface coverage θ at different ligand
profiles comparing polymer simulations (symbols) and theory (eqs 4,
5) (solid lines) at the same bulk polymer concentration and maximum
value of surface coverage, and following the first two design rules. (B)
Dependence of the free energy on the receptor composition F(c1) .
Copolymers have l = [0.325,0.675], βϵ2,2 = −3 and Δϵ1,1 represents
the deviation of ϵ1,1 from the second design rule. (C) The targeted
composition; receptor composition c1 at the minimum free energy
c1(Fmin), for a spectrum of binding strength values at l =
[0.325,0.675]. The black line follows the theoretical design rule,
βϵ2,2 = βϵ1,1 + ln(l2/l1), at which the targeted receptor profile indeed
matches the ligand profile, c1 = l1 (orange color). (D) Dependence of
the free energy on the number of formed bonds at Nlig = 10 for
analytical theory (red circles) and simulation data for nanoparticles
(blue diamonds; taken from ref 32) and central-alternating
copolymers (orange triangles). (E) The dependence of selectivity γ
on the free energy of binding per ligand f b. (F) A comparison of the
maximal selectivity for polymers (symbols, cf. Figure 4C and D) and
the theoretical model (lines). Parameters: All polymer simulations use
central-alternating copolymers with Nlig = 20, 40, 40, 10 for the A, B,
C, D panels, respectively.
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maximal selectivities than those predicted by uncorrelated
binding theory for nanoparticles (Figure 6F).
Herein lies the main message of this work. Multivalent

copolymers exhibit selectivities higher than those of nano-
particles and offer significant opportunities to improve
selective targeting by influencing polymer-specific design
parameters, such as the distribution of ligands. Another
parameter that can significantly improve selective targeting is
the number of distinct receptor and ligand types. Figure 7

displays an example of targeting a surface with (random)
copolymers containing three different types of ligands, where
the binding strengths follow the first two design rules. The
highest surface coverage arises at c* ≈ l, demonstrating that
polymers indeed target the desired composition of the three
receptor types.
Design Rules for Targeting. Here we summarize the

design rules for targeting multicomponent surfaces using
multivalent binders, both the results of this work and previous
studies.32 The following design rules apply to receptor
composition targeting (γ selectivity):

1. l = c*: The ligand profile should match the target
receptor profile.

2. e−βϵi,i ∝ 1/ci* (or equivalently Kd,ii ∝ ci*): The ligand−
receptor binding strength should be inversely propor-
tional to targeted receptor density, cross-binding should
be minimized e−βϵi≠j = 0.

3. Ligand binding should be weak, each ligand independ-
ently should have the probability of being bound around
30−70% depending on the degree of allosteric
cooperativity between ligand binding.

4. Optimally targeting multicomponent surfaces requires
precise control over the ligand distribution, ligands of
different types should alternate in a regular pattern.

5. Design for allosteric cooperativity when possible. For
polymers this means that ligands should be close to each
other on the chain contour, while still being sufficiently
apart to allow binding with adjacent receptors.

6. Increasing the number of distinct ligand receptor types
increases the potential selectivity.

In practice, we might want to maximize both α and γ
selectivity. Design rules 1 and 2 apply only to γ selectivity and
ensure that the maximal binding occurs at the desired receptor

density profile. Weak ligand−receptor binding (design rule 3)
applies to both α and γ, α is maximized at slightly weaker
binding than γ, but the difference is small (see SI Figure S5).
The requirement of precise control over the ligand distribution
(design rule 4) applies only to γ, whereas control over ligand
distribution is not necessary to achieve high α, in fact, we find
that α is maximized in random (Poisson distributed)
copolymers. Increasing the cooperativity of ligand binding
(design rule 5) increases both α and γ. The effect of increasing
the number of distinct ligand and receptor types (design rule
6) on α has not been studied, theory (eqs 4 and 5) suggests
that changing the number of distinct ligand and receptor types
does not appreciably affect α.

■ CONCLUSIONS
In summary, we investigated the optimal design of copolymers
for selective targeting by performing grand-canonical Monte
Carlo simulations. By considering five distinct ligand
distributions, we show that the ligand sequence plays a crucial
role. Surprisingly, selectivity to the overall receptor concen-
tration α is maximized by using random copolymers with a
Poisson distribution of ligands per polymer, instead of regular
copolymers with a defined sequence. Conversely, copolymers
with a random distribution of the number of ligands per
polymer are unable to target a specific receptor composition
profile. The maximum selectivity to a receptor profile γ is
obtained by regular copolymers with centrally located ligands.
We show that entropic effects and cooperativity between
ligands are major factors in selective targeting. For example,
polymers where all ligands are located in a block in the center
of the polymer exhibit higher selectivities than polymers where
ligands are distributed uniformly over the whole length of the
polymer. Such central polymers exhibit a very strong
cooperative effect due to the ability to bind as a ”train”.
These findings support results previously obtained for the α
selectivity of polymers with a single type of ligands.61 This
study was performed at a constant concentration of receptors
on the surface and a constant number of course-grained beads
in polymers. We did not study in detail the relationship
between the receptor separation (concentration and size) and
the optimal ligand separation. We expect that as receptor
separation increases the optimal distance between ligands also
increases, but the exact relation is currently unknown and ripe
for further study.
Interestingly, ligands of different types should alternate and

not appear in a large block of, e.g., type 1 ligands followed by a
large block of type 2 ligands, which would likely be much easier
to synthesize experimentally. Alternation of ligands improves
selectivity because it decreases cooperativity when binding to a
surface where the receptor composition does not match the
ligand composition on the polymer. Contrasting this to
copolymers with blocks of the same type of ligands in the
center, high cooperativity between the ligands when interacting
with any surface can lead to drastically decreased selectivity. In
fact, we show that central copolymers with ligand types in
blocks can even be anti-selective; the surface coverage has a
minimum at the targeted composition, showing that ligand
distribution qualitatively affects the targeting ability.
We studied the effect of polymer rigidity on selectivity and

found that changing the persistence length by 2 orders of
magnitude exerts only a minor effect on maximal selectivities.
Increasing the rigidity of polymers can increase the α
selectivity by up to 30% compared to flexible polymers,

Figure 7. A heatmap of the surface coverage dependence of θ on the
distribution of receptors c = [c1, c2, c3] with three types of ligands and
receptors. The polymers had randomly distributed ligands with Nl =
[4,6,10] (l = [0.2,0.3,0.5]). The binding strength followed the first
two design rules (ϵi,i ∝ ln(li)) with βϵ3,3 = −4.0.
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while it has no noticeable effect on the γ selectivity. We explain
this by the opposite effects of increased radius of gyration and
of increased cooperative binding as trains upon increasing the
rigidity. Therefore, we conclude that the effect of backbone
rigidity on selectivity is not substantial and copolymers will
behave in a similar fashion regardless of the stiffness.
Comparing the simulation results with the theoretical design

rules describing how to target a particular receptor
composition, we find excellent agreement with our polymer
simulations. Interestingly, the selectivities α and γ of polymers
are much larger than predicted by the theory due to the
entropic cooperative effects of the polymer ligand binding.
Moreover, the location of the maximal selectivity for polymers
occurs at weaker interactions (free energy per bond of only f b
≈ − 0.4kBT) compared to the analytical prediction, which we
again attribute to the correlated (cooperative) ligand binding.
These findings should be broadly useful for applications of
specific targeting and binding in supramolecular chemistry and
biology. By using multivalent copolymers, it is possible to
improve selective targeting of cell surfaces and thus minimize
the side effects of treatments with targeted drug delivery.
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number of bound polymers. For rigid polymers, the calculation
of the surface coverage is not accurate, but a more accurate
approach would only rescale θ values linearly and thus not
affect selectivity, which is the main focus of our study.
bThe γ results for Poisson copolymers are calculated using the
curvature of θ from the full range c1 = 0 to 1, different from the
remaining ligand distributions which use a curvature by
approximating a parabola within 0.3−0.7. This is due to
large uncertainties in γ for Possion copolymers when using the
smaller range.
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