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ABSTRACT

We develop a computational method based on Dissipative Particle Dynamics (DPD) that introduces solvent hydrodynamic interactions
to coarse-grained models of solutes, such as ions, molecules, or polymers. DPD-solvent (DPDS) is a fully off-lattice method that allows
straightforward incorporation of hydrodynamics at desired solvent viscosity, compressibility, and solute diffusivity with any particle-based
solute model. Solutes interact with the solvent only through the DPD thermostat, which ensures that the equilibrium properties of the solute
system are not affected by the introduction of the DPD solvent, while the thermostat coupling strength sets the desired solute diffusivity. Thus,
DPDS can be used as a replacement for traditional molecular dynamics thermostats such as Nosé-Hoover and Langevin. We demonstrate the
applicability of DPDS in the case of polymer dynamics and electroosmotic flow through a nanopore. The method should be broadly useful as
a means to introduce hydrodynamic interactions to existing coarse-grained models of solutes and soft materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0197112

I. INTRODUCTION

Coarse-grained implicit-solvent models are usually parameter-
ized to produce a desired equilibrium distribution of states. Using
the same models in non-equilibrium simulations with desired trans-
port properties and hydrodynamic behavior requires a method that
introduces hydrodynamic interactions at the specific solvent vis-
cosity, compressibility, and solute diffusivity without affecting the
equilibrium configurational properties of the system.

To achieve this, the coarse-grained system can be coupled
to a mesh, typically a cubic grid, and hydrodynamics is solved
using this mesh. A few examples of such approaches include Multi-
Particle Collision (MPC) dynamics or Stochastic Rotation Dynam-
ics (SRD),"” Lattice Boltzmann (LB) methods,” and Fluid Particle
Dynamics (FPD).* However, coupling the continuous system to a
mesh can introduce artifacts and increase propagation errors. MPC
does not conserve angular momentum (or breaks time-reversal sym-
metry) and suffers from artificially high compressibility.” LB allows
the embedding of large colloids, but the embedding of particles
smaller than the lattice size, e.g., polymers, suffers from lattice
discretization errors, and mixing molecular dynamics with LB prop-
agation leads to energy conservation issues.” FPD directly solves
the Navier-Stokes equations but can only embed objects in at least

a few lattice sites in size, which makes the method suitable for
nanoparticles and colloids® but computationally inefficient for small
molecules, ions, or polymers.

Among off-lattice approaches, the most straightforward way to
partially introduce hydrodynamics is to apply a Galilean-invariant
thermostat directly to the solute particles;” however, this approach
requires a dense suspension and is not applicable to dilute solu-
tions. A general off-lattice method is Dissipative Particle Dynamics
(DPD), which simulates hydrodynamic interactions by representing
the fluid as soft particles.”” DPD reproduces the desired solvent vis-
cosity and compressibility while describing thermal fluctuations and
allowing the explicit representation of different chemical compo-
nents.'” However, simply adding DPD particles to a coarse-grained
system introduces solvation and depletion effects and, thus, changes
the equilibrium properties of the system. To overcome these prob-
lems, the solute model must be designed for a specific DPD sol-
vent parameterization, and typically the solute-solute interaction
is restricted to the soft DPD repulsive interaction, which signifi-
cantly limits the space of solute models. For example, point charges
cannot be included due to electrostatic divergence issues when com-
bined with the DPD soft repulsive potentials.'" While it is possible
to model a variety of multicomponent systems by modifying the
conservative interactions between DPD particles,””'* this approach
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requires careful parameterization; altering conservative interactions
does not merely change the equilibrium properties but also transport
behavior such as local viscosity, compressibility, and diffusivity.

Here, we propose an alternative off-lattice method, named
DPD solvent (DPDS), that incorporates hydrodynamic interactions
in coarse-grained models of solutes. The premise of the method is
to overlay the DPD fluid at the desired viscosity and compressibil-
ity with the solute system. The DPD solvent interacts with the solute
system only via the DPD thermostat. Thus, the equilibrium prop-
erties of the system and the DPD-solvent are fully decoupled and
can be controlled separately, while the transport properties are deter-
mined by the solute-solvent thermostat coupling strength. The main
advantage of this procedure over existing lattice methods is that it
avoids any lattice mapping issues. The same or a similar velocity-
Verlet integrator is used to evolve configurations both for the solute
system and the DPD solvent, which minimizes propagation errors
due to solvent-solute coupling and significantly simplifies the imple-
mentation compared to hybrid lattice approaches. The main advan-
tage of DPDS over standard DPD is that DPDS can be directly used
with any solute model and is not restricted to soft DPD repulsive
potentials. This enables straightforward simulations of charged par-
ticles and the introduction of hydrodynamic interactions to already
developed solute models. Moreover, hydrodynamic interactions can
be switched on/off without affecting any equilibrium properties of
the solute system, allowing direct evaluation of hydrodynamic effects
compared to, for example, Langevin dynamics.

In the following, we review the DPD technique and then show
how to combine it with coarse-grained systems of solutes using the
DPDS approach. We demonstrate the applicability of DPDS on two
typical coarse-grained models, a bead-spring polymer and an elec-
trolyte solution, and show that it accurately describes hydrodynamic
interactions by investigating polymer collapse, Zimm dynamics, and
electrokinetic flow in patterned nanochannels.

Il. REVIEW OF THE DPD FLUID PROPERTIES

The DPD fluid is modeled as a canonical ensemble of soft,
spherical particles at density p and temperature T. The particles
interact via three distinct interactions. The conservative pair inter-
action is typically chosen as parabolic repulsion, with the potential
energy of an ensemble of N particles,

forr; < re,

V=15 {aﬁ(l o <1>

7 |0, otherwise.

The sum proceeds over all particle pairs i,, with r; the position of

particle 4, rjj; = i — rj| the inter-particle distance, and r. the cutoff

length. The prefactor a;; is set to reproduce the desired compressibil-

ity of the fluid’ and can be different among different particle types
to model multicomponent fluids.

The dissipative friction force between particles i and j is

2 A 2 o T

Fij = yo(ry)" (vij - £j) 5 — yrw (1)~ (I - £k ) v, @)

where the first term describes the friction force parallel to the

inter-particle vector rj = rj — r; with ; = r;/|r;;| the correspond-

ing unit vector. The friction is proportional to the coefficient

y and the distance-dependent weighting function w(r). The
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second term describes the corresponding perpendicular contribu-
tion,'” i.e., the shear friction, with coefficient y N and weighting func-

tion w, (rjj). I is the identity matrix, and # 1' denotes the transpose
of .

The fluctuation-dissipation relation implies that the random
force between the two particles is given by

r th
Fj= \/ZkaTw(rij)—]r,]
\/ZyikBTwL(r,])

where the prefactors are determined by the desired temperature T
of the system, dWj; is the independent increment of a Wiener pro-
cess, and dWj; is the Vector of independent Wiener processes. For a
(,]At_l/2 and 2 ” (,]Al‘_l/2 where (
is a symmetnc random variable with zero mean and unit variance
and {;; is the corresponding random vector.

The stochastic differential equations that determine the evolu-
tion of the fluid are,

] (- r,Jr,J) (3)

dv; ov
m,-E = “on + Z FU +F,J,
(4)
i .,
dt - YD

with m the mass of the DPD particles. These equations are usu-
ally evolved using the velocity-Verlet integrator,”'® and the DPD
model is implemented in various open-source molecular dynamics
(MD) packages such as the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS), EPResSo, and HOOMD-
blue. Since the dissipative and random forces act only on relative
velocities, the integrator preserves Galilean invariance and con-
serves momentum, implying that the behavior of the fluid fol-
lows Navier-Stokes hydrodynamics on sufficiently large length
scales.

When applied to molecular simulations, the main advantage of
DPD compared to Langevin dynamics or finite element hydrody-
namic solvers is that the DPD method simultaneously samples the
correct canonical (N, V, T) Gibbs-Boltzmann ensemble, preserves
hydrodynamics, and can capture chemical specificity. Consequently,
the method has been widely used to simulate hydrodynamic inter-
actions in various systems, including colloidal suspensions, blood,
phase-separating fluids, polymer solutions, electrolytes, and biolog-
ical membranes; see Refs. 10 and 17 for extensive reviews of DPD
fundamentals and applications.

In the following, we use standard parameters correspond-
ing to an aqueous solution with each DPD particle representing
Ny, = 3 water molecules: the particle density ps = 3/rZ, with the cut-
off r. = 0.646 nm, which is taken as the length unit A =r., and
the interaction prefactor a;; = 78kp T reproduces the compressibility
of water at room temperature.” To reduce the number of para-
meters, the dissipative weighing function w(r;) has the same form
as the conservative repulsive force, a common choice for DPD
simulations, '’

w(rj)=1-"2. )

C
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The friction coefficient y determines the crossover timescale
between the ballistic and diffusive regimes, 7ap ~ m/y (an exact
calculation is provided below). The typical choice for the friction
parameter is y = 4.5v/kgTm/r.,” which ensures that the dynamics
is diffusive on all relevant length scales (r > r.) and time scales
(t 2 1), where the molecular dynamics time unit 7, which mea-
sures the characteristic time required to move ballistically by a

distance rc, is T = ren/m/ (ks T'). The original DPD formulation used
no shear friction (y, =0),” but its inclusion has been shown to
improve hydrodynamic properties,'” so we use y =y and w, (r;)
=w(ry)."*

We note that employing these standard DPD parameters con-
tains the inherent limitation that the Schmidt number Sc = vi/D,
which measures the ratio of momentum diffusion to mass diffu-
sion, with v the kinematic viscosity and D the diffusion constant,
is too low. Sc ~ 7 for the DPD fluid, which is much smaller than
Sc ~ 370 expected for water at room temperature (T = 298 K) and
standard pressure.”'® This discrepancy is a consequence of using
a soft repulsive potential [Eq. (1)] and relatively weak friction
that together allow for significantly larger time-steps, which
increases the efficiency of the method by about four orders of
magnitude compared to atomistic simulations.'> However, the low
Schmidt number does not appear to affect the transport properties of
polymers as long as momentum diffusion is faster than mass dif-
fusion (Sc > 1).!” Moreover, for the majority of nanoscale systems,
hydrodynamic flows occur in the low Reynolds number regime
(Re < 1), in which case inertia is irrelevant and, thus, an incorrect
Schmidt number is not expected to affect any observables. If
required, high Schmidt numbers can be obtained by increasing the
friction coefficient y, modifying the weighing function w(r;), at a
cost of efficiency,*”” or by using the Lowe thermostat.”’ We stress
that the proposed DPDS method is general and can be applied
to any DPD parameters that model higher Schmidt numbers or
non-aqueous solutions.

The simulation time scale 7 is determined by setting the desired
dynamic viscosity # of the fluid. The viscosity of the DPD fluid
can be measured via self-diffusivity, the decay of the stress auto-
correlation function, or the Poiseuille profile. “** At the standard
parameters used, the viscosity obtained by fitting the Poiseuille
profile is 7 = (2.31 + 0.05)kg T7r2> (see Sec. IV B), which is consis-
tent with the value obtained by the decay of the stress autocorrelation
function (v = 0.748kg TTm ™", at p= 3r22).¥ To model the dynamic
viscosity of water, = 107 Pa s, at room temperature, T = 298 K,
the MD simulation time scale is thus 7 = 29 ps.”

Ill. DPD SOLVENT

We aim to incorporate hydrodynamic interactions within an
existing system of solutes, such as ions, molecules, polymers, or
nanoparticles. The premise of the DPDS method that achieves this
is:

(i) There are no conservative interactions between the system
and the DPD fluid. This requirement ensures that all equi-
librium configurational observables of the system are not
affected by the presence of the DPD solvent. The DPD sol-
vent parameters (a;;,y) are set to reproduce the desired
compressibility and viscosity of the solvent.

ARTICLE pubs.aip.org/aipl/jcp

(if) The system interacts with the solvent via the DPD thermo-
stat, whose coupling is set to reproduce the desired diffusion
constant of the solutes. In particular, a system containing N
solute particles is described by interactions that define the
potential energy ACAD) depending on the positions )" of
these solute particles. To preserve the equilibrium distribu-
tion of configurational states, the DPD fluid is coupled to
the solutes only via random and dissipative forces [Eqgs. (2)
and (3)], and the solute-DPD coupling is determined by the
strength y. and the weighting function ws(r;;). To simplify
the implementation and reduce the number of parameters,
ws(rij) has the same form as between DPD particles, Eq. (5),
but with a different cutoff value, rs,

wy(ry) =1-"7, ©)

S

where the index i refers to solutes and the index j to sol-
vent (DPD) particles. We stress that there is nothing spe-
cial about this form; Eq. (6) is chosen for convenience, but
any other peaked function could be used. There are no
direct, dissipative, or random forces between solvent parti-
cles. The perpendicular and parallel coupling strengths and
weighing functions are chosen to be the same: y, =y, and
wys(7i) = ws(ry). Thus, the solute-solvent coupling is deter-
mined by just two parameters: strength y, and range rs. The
range rs is determined by the size of the solute, including
the solvation layer, and y, by the desired solute diffusion
constant D.

The solute-solvent hydrodynamic coupling [Eq. (6)] is spheri-
cally symmetric, which is applicable to the large majority of coarse-
grained models that are based on spherically symmetric excluded-
volume interactions, such as monomers in a bead-spring poly-
mer,”* ions, force-fields such as MARTINI,* or DNA/RNA models
such as 0xDNA.?® Non-spherically symmetric cases are discussed
later.

The diffusion constant D = D(rs, y,) measured via the mean-
squared displacement is shown in Fig. 1. The diffusion constant
scaling can also be estimated analytically. Strong coupling, y, — oo,
implies the solvent is rigidly coupled to the solute within range r;,
thus the solute behaves as a solid sphere with radius rs whose dif-
fusivity is given by the Stokes-Einstein relation, D = kg T/(6mr,).
Conversely, in the weak coupling regime, the diffusion constant
can be calculated by mapping the thermostat forces to a Langevin
equation,” which yields the diffusion constant D = 15k T/27yspr?
(note that this expression is a factor 3 smaller than the result in Ref.
9 due to the inclusion of shear forces, y, ;= y,). These two limits
imply the following functional form for the diffusion constant of

the solutes:
kgT [ 1 15
L ?)
2rrs \ 31 pysts

D(rs,95) =

Using this scaling, the simulation data collapses to a master plot and
follows Eq. (7) to within ~30% (Fig. 2). Therefore, Eq. (7) can be used
to estimate y, given a desired diffusion constant D and solute size rs.
If the thermostat without shear forces is used (y, ; = 0), the second
term in Eq. (7) should be multiplied by a factor of 3.
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diffusivity D/ (A%

1075 0 10" 2
damping vy

FIG. 1. Diffusion constant depending on the solute size rs and coupling strength
y- Data obtained by simulating system size L = 100A at dilute solute density p,
=10-31"2 and timestep At = 10~°7 at the standard DPD parameters: r¢ = A,
p=3r% aj=T8ksT, and y = 4.5ks Tzry 2. D = (r?)/(67) with the MSD (r?)
calculated in the diffusive regime (¢ > 507).

The diffusion constant of a typical small solute such as an ion
or a small molecule is D ~ 1 nm*/ns, which is D ~ 0.0781*/7 in the
standard DPD units (A = 0.646 nm, 7 = 0.029 ns). Our simulation
data confirm that by choosing the mass of the solute particles the
same as the mass of the DPD particles, the dynamics are already
fully in the diffusive regime at (r*) = A? (Fig. 3). As expected, the
dynamics do not depend on specific y, and r; as long as D is kept
constant. The transition from ballistic to diffusive dynamics occurs
on the lengthscale rgp = 2\/§DT/A ~ 0.27A (Fig. 3). Therefore, we
conclude that the standard DPD friction y = 4.5ks T7r-> models the
appropriate diffusive dynamics on the relevant lengthscales (r > 1).

If necessary, the ballistic-diffusive transition 7gp can be pushed
to even smaller values by increasing the DPD solvent friction y or
decreasing the solute mass, but both would require a smaller inte-
gration time-step, decreasing the efficiency. Conversely, if a larger
ballistic regime is permitted, y could be decreased, which would
reduce the DPD viscosity and, thus, increase the value of the time
unit 7, allowing exploration of longer timescales, but that would
also reduce the Schmidt number (Sc), which may be important; see
discussion below.

10 g

iy
(=]

-
o‘

diffusivity Dr, /(x*F)

10° ...““-1 * .“““0 * .“““1 * .“““2 *

damping ysrszl(y Xz)

FIG. 2. Master plot of diffusivity data from simulations (symbols) and comparison
to the analytical prediction [dashed line, Eq. (7)].
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10%F '
~ 10'F
<
NP
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v 108 —rJr.=07
g10’ —IJr =1 4
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10°F -- D=20.078x2/r E
- mv =3k, T
107 5 3
-4 1 1 L L
105
107 10" 10° 10’ 10 10°
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FIG. 3. Mean-squared displacement (MSD) of solutes in bulk solution for different
rs at D~ 0.078A%/7. [rs,y,] = [0.71,30y] (red squares), [A,5y] (blue dia-
monds), and [ 1.5, y] (green triangles), showing the ballistic-to-diffusive transition
does not explicitly depend on y, and rs, but only on D.

A. Limitation of the method: Solute permeability

The main limitation of using only dissipative and random
forces for the solute-solvent interaction is that solutes are not
impermeable to the solvent particles. The coupling y, effectively
determines the local viscosity at the location of the solute particle,
but the solvent can pass through the solute. This is illustrated by the
velocity profiles around a spherical solute (Fig. 4). Larger coupling
¥, leads to smaller fluid velocity at the particle location. In the limit
y, = 00, the solute becomes effectively impermeable. In this sense,
DPDS bears similarities to the MPC? and FPD* methods.

The effect of permeability can be systematically investigated
by choosing different s, y, that yield the desired diffusion constant
(Fig. 4). Atlarge y, the flow profile approaches the Oseen prediction
for an impermeable spherical particle,”’

3
b a 3a

Ve =1+ —5—-—1,
* 0( 2x° Zx)

3 2
f a 3a —xRe/a
SO P |
* 0( 25 2%’ Re )

where v2 and vf are the flow velocities behind and in front of the
particle on the symmetry axis at z=y=0. vo = Dfpamde/ [ksT(1

+3Re/8)] is the far field velocity at total force fice = GxL®, with
Gy the body force on the fluid and L the system size (to calculate
the flow profiles, the particle is immobilized and the force is applied
to the fluid). The radius of a sphere that yields the desired diffu-
sion constant Disa = kg T/(671D), and the corresponding Reynolds
number is Re = apv, /5. The simulated flow profiles approach the
Oseen prediction for large y, [Fig. 4(d)]. The ratio y,/y = 5 appears
to be sufficiently large to reproduce the Oseen profile to a distance
r ~ 3/4) and also the hydrodynamic scaling of polymer collapse, as
shown below.

Another limitation of solute permeability concerns fast, time-
dependent changes to the flow. The timescale of the solute-solvent
coupling was calculated above, Tgp = 2D7*/\* and, thus, any
temporal momentum change on timescales t < tgp will not be
adequately transferred between solute and solvent. However, for
standard DPD parameters and typical solute diffusivities, we find

®)
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FIG. 4. Velocity profile around a spherical solute located at x = y = z = 0. (a)—(c)
The three profiles are obtained at [rs, y,] = [0.74,30y] (a), [A,5y] (b), and
[1.51, y] (c), corresponding to D = 0.07812/7 (Fig. 3). The profiles are calculated
by averaging the velocity of all DPD particles within —0.1 < z/A < 0.1 fort = 1077.
System size L = 101 with periodic boundary conditions and body force density Gy
=10~3kg T/A* imposed on DPD particles. (d) The velocity v, on the center line is
obtained by averaging within 0.1 < y/A < 0.1and 0.1 < z/A < 0.1. The Oseen
analytical prediction (black line) is given by Eq. (8).

7gp < T (Fig. 3); the timescale of solute-solvent coupling is smaller
than that of solvent-solvent coupling. Therefore, DPDS is not
expected to introduce additional high-frequency limitations, and the
standard DPDS parameters used here are sufficient for any pertur-
bations slower than 7gp ~ 10 ps, which should be adequate for most

ARTICLE pubs.aip.org/aipl/jcp

applications. If even faster response times are required, 7 can be
reduced by increasing the thermostat friction y.

If permeability is not allowed, for example, to model imper-
meable membranes, the repulsive interactions between solute and
solvent can be added to the model. This is partially achieved by the
standard DPD approach, where solute-solvent interaction, e.g., for
membrane lipids'® or polymers,' is also represented as soft repul-
sion [Eq. (1)]. Full blocking could be achieved by hard repulsive
interaction such as Lennard-Jones or Weeks-Chandler-Andersen
(WCA). In either case, the solute-solvent conservative interactions
change the equilibrium distributions of the solutes and induce
entropic depletion interactions between solutes if solutes and sol-
vent particles are not of the same size. This likely requires that
the solute model be designed and parameterized for specific DPD
solvent parameters.

B. Recipe

We provide a straightforward recipe on how to use the DPDS
method with coarse-grained models of solutes.

1. Choose the desired solvent properties: determine the min-
imum DPD length scale r. on which to resolve hydro-
dynamics and obtain the desired compressibility via a;.”
Choose the thermostat coupling y that results in the desired
transition between ballistic and diffusive regimes. The stan-
dard parameters r. = 0.646 nm, p = 3r_ 3 aij = 78kgT, and
y = 4.5\ kgTm/r. are likely a good starting point for most
coarse-grained models of aqueous solutions of molecules,
ions, and polymers.

2. Determine the solute-solvent coupling, rs and y,, that yields
the desired solute diffusivity D: The size rs should be similar
to the physical size of the solutes, and y, is determined via
Eq. (7) or by measuring the mean-squared displacement of
solutes.

This introduces both hydrodynamic interactions and ther-
mostating of the solute system while maintaining the equilibrium
configurational distribution of the solutes. An example implemen-
tation in the open-source MD package LAMMPS is provided in the
Appendix.

IV. APPLICATIONS

To demonstrate the applicability of the DPDS method, we
investigate two different systems where hydrodynamic interactions
play a crucial role: the collapse and diffusion dynamics of a single
polymer and the electroosmotic flow of an electrolyte solution.

A. Polymer dynamics

We consider a bead-spring polymer model** in an aqueous
solution. Consecutive beads in a polymer chain of N beads are
connected via a harmonic potential,

U= g(r,j S )

with zero-energy bond length A and strength K = 100k T/A%.

The polymer is immersed in a DPD solvent described
by the standard parameters for an aqueous solution (p = 3r:°,
y= 4.5kBT‘r/rf, aij = 78k T, and rc = A = 0.646 nm). The coupling
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between the polymer beads and the DPD fluid is achieved with
y,=5yandrs =rq, which models the diffusion constant of individ-

ual monomers D = 1.1 nm*/ns (Fig. 1). The system is evolved using
the velocity-Verlet integrator with a time step of At = 0.0057.

First, we measure the diffusion constant for different polymer
sizes and compare the scaling with the Zimm dynamics prediction
D o N7, with v the scaling exponent; v = 0.588 at good-solvent con-
ditions.”® The system is a cubic box with a size of L = 1001 and
periodic boundary conditions. Polymers of length N and monomer
density p_ = 107°/)° are equilibrated under good solvent condi-
tions. Bead-bead repulsion is modeled as a Lennard-Jones (WCA)
interaction with size o = A, strength ¢ = kg T, and cutoff ey = 26,
We measure the mean-squared-displacement of all monomers (r*)
for t = 50007. The diffusion constant is measured via the slope of
the average mean squared-displacement as a function of time, 6D
= 9(r*)/0t; at large displacements, () > (2Rg)*.

The scaling of the diffusion constant with size fully reproduces
the expected Zimm dynamics (Fig. 5). Small deviations (<10%)
occur for very short polymers (N ~ 1) due to finite size effects.

We next measure the timescale of a hydrophobic collapse of
the polymer, a problem related to the dynamics of protein fold-
ing. Analytical predictions for the hydrophobic collapse timescale
7 of an initially expanded polymer indicate 7. ~ N* for Brownian
dynamics and 7. ~ N** with hydrodynamics® since a polymer glob-
ule needs to travel a distance ~ N while the drag on the collapsed
globules scales as ~ N for Brownian dynamics and ~ N'”* for Stokes
flow.

The collapse timescale 7. is defined by the time required for the
change in the radius of gyration Rg(t) to reach a fraction f. = 0.9 of
the maximum change,

Rg(Tc) = (1 - fc)Rg,O + fcRg,colx (10)

where Rgo and Ry, are, respectively, the initial and the final (col-
lapsed) Ry values. We consider two initial configurations: (i) a fully
expanded linear polymer (Rgo ~ N) and (ii) a polymer equilibrated
at good solvent conditions (Rgo ~ N*) with the scaling exponent
v =0.588. To model the collapse, we introduce attractive interac-
tions between monomers modeled by the Lennard-Jones potential
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FIG. 5. Diffusion constant D depends on polymer size N. Simulation data (black cir-
cles) is well described by Zimm dynamics (red dashed line) with the good-solvent
scaling exponent v = 0.588. Error bars denote standard errors obtained from eight
independent simulations.
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with size ¢ = A, strength ¢ = 1.25kg T, and cutoff rijey = 2.50, which
introduces a sudden quench in solvent quality. We can estimate the
Flory-Huggins y parameter by matching the critical point of the
Lennard-Jones fluid, Ty ~ 1.3¢/ks, to the regular solution model,
yielding y ~ 2T 1y/T. For ¢ = 1.25kp T, this results in y ~ 3.25, which
is sufficiently large to drive polymer collapse.

Simulation data shown in Fig. 6 show the scaling follows
Tc ~ N¥22002 for an initially fully stretched polymer, while
7c ~ N®%005 for an initially equilibrated polymer. The first scaling
exponent is close to the analytical prediction for an expanded poly-
mer N*?, and the second agrees with previous DPD predictions for
an equilibrated polymer,'* 7, ~ N*%8009,

To further validate the DPDS method, we compare it with
the standard DPD approach. We perform collapse simulations of a
neutral polymer using the standard DPD model, where the conser-
vative monomer-monomer and monomer-solute interactions are
described by the DPD potentials [Eq. (1)] and thermostat with
y = 4.5kp TrZ* is applied between all pairs of particles. The inter-
action strength is described by the prefactor a;, where i denotes
a solute and j is a solvent. We use aj = a;; = 78kgT. The poly-
mer is equilibrated in good solvent conditions (a;i = 85ksT'), and
the collapse is then initiated by changing the monomer-monomer
interaction to a; = 65kgT, thereby reducing the solvent quality.
The interaction difference a;j — a;; = 13kgT results in the y para-
meter’ of x ~ 3.5, which is very close to the above estimate for the
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FIG. 6. Polymer collapse. (a)—(c) configurations of a bead-spring polymer of size
N =200 during collapse from an initially fully expanded linear chain at (a)
t = 5007, (b) t = 20007, and (c) t = 25007. (d) DPDS simulation data showing
collapse timescale dependence on the polymer size N for an initially expanded
linear chain (black circles), which follows ~ N'42£092 scaling, and an initially
equilibrated polymer at good solvent conditions (blue diamonds), which follows
~ N095£005 "For comparison, we show the collapse data using the standard DPD
model with soft-repulsive beads (purple triangles). System size for the initially
expanded case is Ly = N + 101, L, = L, = 50A, and for equilibrated polymers,
Ly = Ly = L; = 80A. Error bars denote standard errors obtained from five (black
circles) and 20 (blue diamonds and purple triangles) independent simulations.
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Lennard-Jones model. The collapse timescales using the standard
DPD approach agree with the DPDS method and Lennard-Jones
polymer model (Fig. 6).

This data on polymer diffusion and collapse timescales indi-
cates that the DPDS method faithfully reproduces the hydrody-
namic coupling between a polymer and a solvent. Contrary to
standard DPD, the DPDS method combined with the Lennard-Jones
interaction (or a similar hard repulsive interaction) allows straight-
forward addition of point charges and simulation of polyelec-
trolytes.”

B. Nanochannel flow

We next consider the electro-osmotic flow of an electrolyte
solution in a slit nanochannel and investigate the coupling between
hydrodynamics and electrostatic interactions. To use DPDS for
wall-bounded flows, we must first briefly discuss a method to
impose a desired no-slip or slip boundary condition at the channel
walls.

1. Wall boundary condition

To impose the desired boundary condition on the channel
walls, we investigate a pure solvent system without ions. Implemen-
tation of solid walls within DPD simulations is not straightforward
due to layering artifacts that can occur next to a flat wall.’! A no-
slip boundary condition can be imposed by introducing a layer of
immobilized DPD particles at the walls;*> however, due to repulsive
interactions, the slip length dependence on the wall particle den-
sity is non-monotonic. Another possibility is to impose a drag force
parallel to the wall.”>”*

Here, we propose an alternative strategy to impose a boundary
condition by coupling the DPD fluid to the immobilized wall parti-
cles only through the thermostat with coupling strength y, , which is
determined by the desired slip-length. The method is very similar to
using a parallel drag force® but is expected to be easier to employ
because it does not require separate implantation of a wall-DPD
thermostat.

The DPD solvent particles interact with a smooth repulsive
surface via a repulsive WCA interaction with o =r. and ¢ = kgT.
The smooth repulsive surfaces are positioned at y, ;| = +(w/2 + rc),
where w is the width of the nanochannel. In addition, immobile par-
ticles are placed at the wall surface y, = +w/2, at 2D density p

. . . -1/2
= pr,, arranged on a regular mesh with lattice spacing aw = py, '*.
These immobile particles interact with the DPD particles only via
the DPD thermostat with strength Ve and range rc [Egs. (2), (3),
and (5)].

To induce flow, a pressure gradient Gy is imposed on the fluid
as a body force, f; = Gx/p, which acts on each DPD particle. The
system size is L, = L, = w and Ly = 40A, with periodic boundary
conditions in x and z. The system is simulated for tis;x = 50007 to
reach a steady state, followed by t = 5 - 10°7 for calculation of the
velocity profiles at different values of the wall-solvent coupling y,,
(Fig. 7).

The velocity profile between two parallel plates at low Reynolds
numbers follows the parabolic Poiseuile profile,

v(y) = %(w2/4—y2+st). (11)
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FIG. 7. Velocity flow profile from DPD simulations (black circles) and compari-
son to Poiseuille profiles (red curves) given by Eq. (11). (a) and (b) DPD data
(black) from bottom to top are obtained at y, /y = [5,3,2,1,0.5,0.3,0.2,0.1,
0.05,0.03,0.02,0.01,0.005,0.003] at pressure gradient Gy = 0.003kgT/A and
w = 10A. Poiseuille prediction (red curves) from bottom to top shown for
slip length Ls/A = [-0.42,-0.03,1.52,5.15,7.7,15.3,30.7,51.2] at viscosity
1 = 2.31kg T1/A° [Eq. (13)].

The slip length,

1

ov -
Ls = +Av| | — s (12)
[( oy )y—¥w/2:|

is determined by the slip velocity Av at the wall. We find the simu-
lated velocity profiles accurately reproduce the parabolic Poiseuille
profiles for at least two orders of magnitude in flow velocity and slip
lengths from zero to larger than channel width (Fig. 7). A small devi-
ation from the parabolic profile is observed within a distance r. of the
wall due to the layering effect of the DPD particles next to a smooth,
repulsive wall.

To avoid numerical errors when calculating derivatives
[Eq. (12)], we determine the slip length from averages in the velocity.
Since the velocity profiles are parabolic (Fig. 7), the slip length can
be obtained by integrating the profile [Eq. (11)],

L-(+-1)%, (13)
vp 6
where © is the average velocity in the channel and
G 2
op = 2 (14)
12
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FIG. 8. Average velocity obtained from simulations (solid black line) and
corresponding slip length using Eq. (13) (dashed red lines) using viscosity
1 =2.31kgT7/A%. The data for different pressure gradients G* = Gy/kgTpA
show perfect overlap. The two parameter fit [Eq. (15)] (solid blue line) is accurate
to within 0.1rc.

is the average velocity for the Poiseuille profile at Ls = 0. Thus, we
obtain the slip length as a function of wall damping y,, (Fig. 8).

Analytical considerations show that in the second order, the
slip length is given by

Li/rc =cifa— 2 — O(a), (15)

with & = r2pwp/n’" and the positive constants ci, ¢, of order unity
that depend on the wall solvent interaction. We find that fitting
c1 = 0.9 and ¢; = 0.13 can be used to predict Ls with accuracy within
0.1r¢ (Fig. 8).

2. Electroosmotic flow

Having described the channel setup and the wall interaction,
we show how to simulate the hydrodynamic flow of an elec-
trolyte. Free monovalent ions are modeled as charged spheres with
short-range ion-ion repulsion modeled by the WCA potential with
hydrated ion diameter 0 = A = 0.646 nm and interaction strength
e =kpT. The experimentally measured value for small-ion diffu-
sivity, D ~ nm?/ns, is obtained at solvent-solute coupling strength
y, =5y and range rs=A (Fig. 3). The electrostatic interactions
are calculated using particle-particle particle-mesh (PPPM) Ewald
summation with a real-space cutoff reywq = 51 and a relative force
accuracy of 107, Slab correction factor 3.0 is used in the y coordinate
to simulate fixed boundary conditions at the channel walls. Electro-
static strength is determined by the Bjerrum length /g = 0.71 nm,
which corresponds to an aqueous solution at room temperature.

We consider an electroosmotic flow in a nanochannel of width
w = 81 under an external electric field E,. To investigate a non-
symmetric case where the accurate description of convection and
diffusion of ions is important, the wall contains a small charged
section that covers a fraction f, =0.25 of the wall surface with
charge density, oq = 0.2e9/A* [see Fig. 9(a)]. The solution contains
counter-ions at density p, = = 20qfy/w. This configuration intro-
duces a pattern in the charge density and Poisson-Boltzmann (PB)
calculations predict two distinct regimes due to the localization of
counter-ions at small external fields.”> This effect is pronounced
at non-zero slip lengths, and we use Ls = 301, a typical order of
magnitude for the slip length of an aqueous solution.’
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FIG. 9. Electroosmotic flow in a slit channel. (a) Configuration setup showing DPD
particles (green), immobile wall particles (white), surface charge (red), and counte-
rions (blue). (b) Mean velocity in a slit channel obtained from DPD simulations and
comparison to lattice-Boltzmann (LB) and Poiseuille prediction [Eq. (14)] at driving
force Gx = Exeopy,,- Slip length Ls ~ 301 is obtained at y,, = 0.005y in DPD, and
fractional bounce-back £ = 0.99 in LB.

The DPDS results are in excellent agreement with PB simula-
tions and clearly show two distinct flow regimes (Fig. 9). The PB
calculations are performed by employing the Ludwig open-source
package with electrokinetics” using lattice size Ax = A/2, reduced
viscosity #* = 0.2, and parameters corresponding to the kinematic
viscosity of water v, = 107 m*/s. The desired slip length is obtained
via a fractional bounce-back boundary condition® with fraction f.
All other parameters are the same as described for DPD. Small devi-
ations between DPD and PB occur at the transition between the two
flow regimes, which we attribute to the lack of thermal fluctuations
in the PB model as well as the lattice approximation and the asso-
ciated lack of unit charge discretization in PB. However, the flow
velocity in the two regimes is in perfect agreement.

These results demonstrate the applicability of DPDS to model
the hydrodynamics of electrolyte solutions. When considering a
highly concentrated solution, the viscosity typically increases with
electrolyte concentration. This effect is captured by the DPDS
method, and the rate of viscosity increases with concentration
depending on the solute-solvent thermostat coupling length r;
[Eq. (6)]. Thus, the value of 7 could be chosen to obtain the desired
quantitative relation between viscosity and solute concentration.
Moreover, direct thermostat coupling [Egs. (2) and (3)] between
solutes could be added to further increase the viscosity of highly
concentrated solutions.

V. SUMMARY

In summary, we proposed a DPD-solvent (DPDS) method
that introduces solvent hydrodynamics to coarse-grained models of
solutes. The solute-solvent interaction occurs only via dissipative
and random forces, which ensures the equilibrium configurational
properties of the solute system are not affected by the presence of the
DPD solvent. The solute-solvent coupling strength is determined
by the desired diffusion constants of the solute. Because the method
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is based on short-ranged DPD interactions, the computational cost
scales linearly with the system size.”

The DPDS method can be utilized as a replacement for a
Nosé-Hoover or Langevin thermostat in coarse-grained MD sim-
ulations while capturing the hydrodynamic interactions at the
desired solvent compressibility, viscosity, and solute diffusivity (see
Sec. 111 B). The examples shown demonstrate that the method repro-
duces the correct hydrodynamics of Oseen flow, channel flow, elec-
troosmotic effects, and polymer hydrodynamics. Moreover, since
the method utilizes the standard DPD thermostat, the simulations
can be performed using existing implementations in open-source
molecular dynamics packages such as LAMMPS and ESPResSo.
Thus, the method should be broadly useful as a means to introduce
hydrodynamics to existing coarse-grained models of molecules and
soft materials.

The method could be used with multicomponent solvents that
are described by two or more different types of DPD particles. "’
In this case, the solute-solvent coupling could be distinct among
different solvents, modeling different diffusivities. In addition, the
chemical potential differences of the solutes in different solvents
could be introduced by soft solute-solvent interactions. While we
have only considered solute models based on spherical excluded-
volume interactions, such as ions or monomers in polymers, the
method can be applied to non-spherically symmetric solutes, for
example, by uniformly distributing ghost particles inside a non-
spherical object and coupling these ghost particles to the DPD
solvent via Egs. (2) and (3).
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APPENDIX: DPDS IMPLEMENTATION IN LAMMPS

Implementation of the DPDS in the LAMMPS open-source
MD package can be achieved using the existing dpd or dpd/ext
pair styles.”’ Let us assume that type 1 is the solvent and type 2

ARTICLE pubs.aip.org/aipl/jcp

is the solute, and hybrid/overlay is used to combine DPD inter-
actions with the solute-solute interactions. For the solute-solvent,
polymer-solvent, and ion-solvent interaction cases discussed in
Secs. II and III [using the Lennard-Jones (L]) reduced units with
unit length A = 7. = 1 and DPD particle density p = 31™°], the solvent
properties are determined by the DPD model:

pair_coeff 1 1 dpd/exta;yy 1 1 1.0
while the solute-solvent coupling is determined by the thermostat:
pair_coeff 1 2 dpd/ext/tstatyy, 1 1r/)

Combining these instructions with the desired solute-solute inter-
actions and a velocity-Verlet integrator introduces hydrodynamic
interactions without affecting the equilibrium canonical distribu-
tion of the solute particles, as compared to using a Langevin or
Nosé-Hoover thermostat.

REFERENCES

' A. Malevanets and R. Kapral, “Mesoscopic model for solvent dynamics,” ]. Chem.
Phys. 110, 8605-8613 (1999).

2G. Gompper, T. Ihle, D. M. Kroll, and R. G. Winkler, “Multi-particle collision
dynamics: A particle-based mesoscale simulation approach to the hydrodynamics
of complex fluids,” in Advanced Computer Simulation Approaches for Soft Matter
Sciences III, edited by C. Holm and K. Kremer (Springer, Berlin, Heidelberg, 2009),
pp. 1-87.

5T. Krueger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen,
The Lattice Boltzmann Method: Principles and Practice, Graduate Texts in Physics
(Springer, 2016).

“H. Tanaka and T. Araki, “Simulation method of colloidal suspensions with
hydrodynamic interactions: Fluid particle dynamics,” Phys. Rev. Lett. 85,
13381341 (2000).

5B. Diinweg and A. J. C. Ladd, “Lattice Boltzmann simulations of soft matter
systems,” in Advanced Computer Simulation Approaches for Soft Matter Sciences
I1I, edited by C. Holm and K. Kremer (Springer, Berlin, Heidelberg, 2009), pp.
89-166.

6 A. Furukawa, M. Tateno, and H. Tanaka, “Physical foundation of the fluid parti-
cle dynamics method for colloid dynamics simulation,” Soft Matter 14, 3738-3747
(2018).

7T. Soddemann, B. Diinweg, and K. Kremer, “Dissipative particle dynamics:
A useful thermostat for equilibrium and nonequilibrium molecular dynamics
simulations,” Phys. Rev. E 68, 046702 (2003).

8p. J. Hoogerbrugge and J. M. V. A. Koelman, “Simulating microscopic hydro-
dynamic phenomena with dissipative particle dynamics,” Europhys. Lett. 19, 155
(1992).

°R. D. Groot and P. B. Warren, “Dissipative particle dynamics: Bridging the gap
between atomistic and mesoscopic simulation,” J. Chem. Phys. 107, 4423-4435
(1997).

'9p, Espanol and P. B. Warren, “Perspective: Dissipative particle dynamics,”
J. Chem. Phys. 146, 150901 (2017).

"R, D. Groot, “Electrostatic interactions in dissipative particle
dynamics—Simulation of polyelectrolytes and anionic surfactants,” J. Chem.
Phys. 118, 11265-11277 (2003).

'2], Pagonabarraga and D. Frenkel, “Dissipative particle dynamics for interacting
systems,” J. Chem. Phys. 115, 5015-5026 (2001).

3R, Groot and K. Rabone, “Mesoscopic simulation of cell membrane damage,
morphology change and rupture by nonionic surfactants,” Biophys. |. 81, 725-736
(2001).

'%]. Guo, H. Liang, and Z.-G. Wang, “Coil-to-globule transition by dissipative
particle dynamics simulation,” J. Chem. Phys. 134, 244904 (2011).

J. Chem. Phys. 160, 174115 (2024); doi: 10.1063/5.0197112
Published under an exclusive license by AIP Publishing

160, 174115-9

SO:L¥:LL ¥20g dunr y¢


https://pubs.aip.org/aip/jcp
http://rockfish.jhu.edu
https://doi.org/10.1063/1.478857
https://doi.org/10.1063/1.478857
https://doi.org/10.1103/physrevlett.85.1338
https://doi.org/10.1039/c8sm00189h
https://doi.org/10.1103/physreve.68.046702
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1063/1.474784
https://doi.org/10.1063/1.4979514
https://doi.org/10.1063/1.1574800
https://doi.org/10.1063/1.1574800
https://doi.org/10.1063/1.1396848
https://doi.org/10.1016/s0006-3495(01)75737-2
https://doi.org/10.1063/1.3604812

The Journal

of Chemical Physics

'5C. Junghans, M. Praprotnik, and K. Kremer, “Transport properties controlled
by a thermostat: An extended dissipative particle dynamics thermostat,” Soft
Matter 4, 156-161 (2008).

'61. Pagonabarraga, M. H. J. Hagen, and D. Frenkel, “Self-consistent dissipative
particle dynamics algorithm,” Europhys. Lett. 42, 377 (1998).

7K. P. Santo and A. V. Neimark, “Dissipative particle dynamics simulations in
colloid and interface science: A review,” Adv. Colloid Interface Sci. 298, 102545
(2021).

8N. Lauriello, J. Kondracki, A. Buffo, G. Boccardo, M. Bouaifi, M. Lisal, and D.
Marchisio, “Simulation of high Schmidt number fluids with dissipative particle
dynamics: Parameter identification and robust viscosity evaluation,” Phys. Fluids
33, 073106 (2021).

9N. A. Spenley, “Scaling laws for polymers in dissipative particle dynamics,”
Europhys. Lett. 49, 534 (2000).

20R. C. Krafnick and A. E. Garcia, “Efficient Schmidt number scaling in dissipative
particle dynamics,” ]. Chem. Phys. 143, 243106 (2015).

21C. P. Lowe, “An alternative approach to dissipative particle dynamics,”
Europhys. Lett. 47, 145-151 (1999).

22 A Boromand, S. Jamali, and J. M. Maia, “Viscosity measurement techniques in
dissipative particle dynamics,” Comput. Phys. Commun. 196, 149-160 (2015).
23Using this timescale we can determine the mass of the particles and find
m ~ 8.3107%* kg, which is about two orders of magnitude larger than the mass
of three water molecules. This is a consequence of the low Schmidt number at
the standard DPD parameters and the requirement to model the desired dynamic
viscosity #.

24M. J. Stevens and K. Kremer, “The nature of flexible linear polyelectrolytes in
salt free solution: A molecular dynamics study,” J. Chem. Phys. 103, 1669-1690
(1995).

25, J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries,
“The MARTINI force field: Coarse grained model for biomolecular simulations,”
J. Phys. Chem. B 111, 7812-7824 (2007).

2B E. K. Snodin, F. Randisi, M. Mosayebi, P. Sulc, J. S. Schreck, F. Romano, T.
E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, and J. P. K. Doye, “Introducing
improved structural properties and salt dependence into a coarse-grained model
of DNA,” J. Chem. Phys. 142, 234901 (2015).

?7G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University
Press, Berlin, Heidelberg, 1967).

ARTICLE pubs.aip.org/aipl/jcp

28M. Rubinstein and R. H. Colby, Polymer Physics (Oxford University Press, New
York, 2003), Vol. 23.

29N. Kikuchi, J. F. Ryder, C. M. Pooley, and J. M. Yeomans, “Kinetics of the poly-
mer collapse transition: The role of hydrodynamics,” Phys. Rev. E 71, 061804
(2005).

397, Yuan and T. Curk, “Collapse and expansion kinetics of a single polyelectrolyte
chain with hydrodynamic interactions,” J. Chem. Phys. 160, 161103 (2024).

511, V. Pivkin and G. E. Karniadakis, “A new method to impose no-slip bound-
ary conditions in dissipative particle dynamics,” ]. Comput. Phys. 207, 114-128
(2005).

32E 1. Barcelos, S. Khani, A. Boromand, L. F. Vieira, J. A. Lee, J. Peet, M. F.
Naccache, and J. Maia, “Controlling particle penetration and depletion at the
wall using dissipative particle dynamics,” Comput. Phys. Commun. 258, 107618
(2021).

33]4 Smiatek, M. P. Allen, and F. Schmid, “Tunable-slip boundaries for coarse-
grained simulations of fluid flow,” Eur. Phys. J. E 26, 115-122 (2008).

547, Smiatek, M. Sega, C. Holm, U. D. Schiller, and F. Schmid, “Mesoscopic sim-
ulations of the counterion-induced electro-osmotic flow: A comparative study,”
J. Chem. Phys. 130, 244702 (2009).

35T, Curk, S. G. Leyla, and 1. Paganobarraga, “Discontinuous transition in elec-
trolyte flow through charge-patterned nanochannels,” arXiv:2401.03666 (2024).
36p. Joseph and P. Tabeling, “Direct measurement of the apparent slip length,”
Phys. Rev. E 71, 035303 (2005).

57F, Capuani, 1. Pagonabarraga, and D. Frenkel, “Discrete solution of the
electrokinetic equations,” J. Chem. Phys. 121, 973-986 (2004).

38K. Wolff, D. Marenduzzo, and M. E. Cates, “Cytoplasmic streaming in plant
cells: The role of wall slip,” J. R. Soc., Interface 9, 1398-1408 (2012).

39D, Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Aca-
demic, San Diego, 2002).

495, Merabia, J. Bonet-Avalos, and 1. Pagonabarraga, “Modelling capillary phe-
nomena at a mesoscale: From simple to complex fluids,” . Non-Newtonian Fluid
Mech. 154, 13-21 (2008).

“1A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS—A flexible
simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales,” Comput. Phys. Commun. 271, 108171 (2022).

J. Chem. Phys. 160, 174115 (2024); doi: 10.1063/5.0197112
Published under an exclusive license by AIP Publishing

160, 174115-10

SO:L¥'LL ¥20T dunr 2


https://pubs.aip.org/aip/jcp
https://doi.org/10.1039/b713568h
https://doi.org/10.1039/b713568h
https://doi.org/10.1209/epl/i1998-00258-6
https://doi.org/10.1016/j.cis.2021.102545
https://doi.org/10.1063/5.0055344
https://doi.org/10.1209/epl/i2000-00183-2
https://doi.org/10.1063/1.4930921
https://doi.org/10.1209/epl/i1999-00365-x
https://doi.org/10.1016/j.cpc.2015.05.027
https://doi.org/10.1063/1.470698
https://doi.org/10.1021/jp071097f
https://doi.org/10.1063/1.4921957
https://doi.org/10.1103/physreve.71.061804
https://doi.org/10.1016/j.jcp.2005.01.006
https://doi.org/10.1016/j.cpc.2020.107618
https://doi.org/10.1140/epje/i2007-10311-4
https://doi.org/10.1063/1.3152844
http://arxiv.org/abs/2401.03666
https://doi.org/10.1103/physreve.71.035303
https://doi.org/10.1063/1.1760739
https://doi.org/10.1098/rsif.2011.0868
https://doi.org/10.1016/j.jnnfm.2008.01.009
https://doi.org/10.1016/j.jnnfm.2008.01.009
https://doi.org/10.1016/j.cpc.2021.108171

